上海卡贝信息技术有限公司

软件产品| 培训中心 | 资料下载 | 技术支持 | 联系我们

您的位置: 首页>产品>统计软件>Latent GOLD>高级模块 欢迎加我们的新浪微博 欢迎订阅我们网站的更新Rss源 添加到百度搜藏
站内搜索

联系我们
点击这里给我发消息 销售咨询
点击这里给我发消息 产品咨询
点击这里给我发消息 软件销售
点击这里给我发消息 售后支持
 400-621-1085
 021-50391085
  sales@cabit.com.cn

 

 

 
  Latent GOLD 功能强大的潜在类别和有限混合建模分析软件

Latent GOLD 4.5: 高级模块

Continuous latent variables (CFactors)
An option for specifying models containing continuous latent variables, called CFactors, in a cluster, DFactor or regression model. CFactors can be used to specify continuous latent variable models, such as factor analysis and item response theory models, and regression models with continuous random effects. For more details, see:

Popper, Richard, Kroll, Jeff and Magidson, Jay (2004).
"Applications of latent class models to food product development: a case study"
Sawtooth Software Proceedings, 2004.

Tutorial #6: Estimating a Random Intercept Regression Model. In this tutorial, we illustrate the use of continuous factors (CFactors) to control for the ‘level effect' in ratings data. A latent class regression model is estimated where the dependent variable is ratings of 15 crackers on taste, and 12 predictors correspond to different attributes of the crackers. Different classes are identified that show different taste preferences, controlling for their overall rating level. These data are based on a paper by Popper et. al. The use of CFactors requires the Advanced version of Latent GOLD 4.5.

Multilevel Modeling
an option for defining two-level data variants of any model implemented in Latent GOLD. Group-level variation may be accounted for by specifying group-level latent classes (GClasses) and/or group-level CFactors (GCFactors). In addition, when 2 or more GClasses are specified, group-level covariates (GCovariates) can be included in the model to describe/predict them. The multilevel option can also be used for specifying three-level parametric or nonparametric random-effects regression models. Sumultaneously develop country-level and individual level segments. See:

Bijmolt, T.H., Paas, L.J., Vermunt , J.K. (2004).
Country and Consumer Segmentation: Multi-level Latent Class Analysis of Financial Product Ownership
International Journal of Research in Marketing, 21, 323-340

Vermunt, J.K, and Magidson, J. (2005).
Hierarchical mixture models for nested data structures
In C. Weihs und W. Gaul (eds), Classification: The Ubiquitous Challenge. Heidelberg: Springer.

For information on other Advanced Module features, download
Chapter 1 of the Latent GOLD User's Guide

Survey Options for complex sample data
Two important survey sampling designs are stratified sampling -- sampling cases within strata, and two-stage cluster sampling -- sampling within primary sampling units (PSUs) and subsequent sampling of cases within the selected PSUs. Moreover, sampling weights may exist. The Survey option takes the sampling design and the sampling weights into account when computing standard errors and related statistics associated with the parameter estimates, and estimates the ‘design effect'

CALL or EMAIL

有关订购Latent GOLD软件的更多信息,请联系我们的产品销售代表:

400-621-1085(赵先生 606分机)
021-50391087
frank#cabit.sh.cn(发信时请将#替换为@)

或点击下面的图片,在线提交购买咨询信息
提交购买咨询信息

 

 

 

 

 

 

快速链接
综述
高级模块
LG-Syntax模块
使用指南
下载试用
立即购买

 

 

 

 

产品|培训|支持|公司|新闻中心|下载|站点地图|隐私政策|加入我们
Copyright 2005-2012  上海卡贝信息技术有限公司   All rights reserved.